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Abstract. Isosurface extraction is an important and useful visualization method.
Over the past ten years, the field has seen numerous isosurface techniques pub-
lished leaving the user in a quandary about which one should be used. Some pa-
pers have published complexity anal ysis of the techniques yet empirical evidence
comparing different methods is lacking. This case study presents a comparative
study of several representative isosurface extraction algorithms. It reports and an-
alyzes empirical measurements of execution times and memory behavior for each
algorithm. The results show that asymptotically optimal techniques may not be

the best choice when implemented on modem computer architectures.

1 Introduction

Researchers in many science and engineering fields rely on insight gained from in-
struments and simulations that produce discrete samplings of three-dimensional scalar
fields. Visualization methods allow for more efficient data analysis and can guide re-
searchers to new insights. Isosurface extraction is an important technique for visualiz-
ing three-dimensional scalar fields. By exposing contours of constant value, isosurfaces
provide a mechanism for understanding the structure of the scalar field. These contours
isolate surfaces of interest, focusing attention on important features in the data such as
material boundaries and shock waves while suppressing extraneous information. Sev-
eral disciplines, including medicine [10, 15], computational fluid dynamics (CFD) [4,
5], and molecular dynamics [8, 12], have used this method effectively.

The original Marching Cubes algorithm [11, 18] for isosurface extraction examined
all cells in the data set. A tremendous amount of research has focused on reducing the
number of cells visited while constructing an isosurface [1,2,9, 14, 17]. These methods
utilize auxiliary data structures to examine only those cells that contain a portion of the



isosurface. While the search structures introduced by many of these methods increase
the storage requirements, the acceleration gained by the isosurfacing technique offsets
this overhead.

Algorithms that use data structures to accelerate isosurface extraction generally pro-
vide lower latency than simple marching methods in visualization applications. In the

context of isosurface extraction, latency is defined as the elapsed time between receiving
a query and returning a complete isosurface. Reducing latency greatly improves interac-
tivity, providing researchers with a better understanding of their data. The visualization
literature lacks studies or surveys comparing the latency and overall performance of the
many different three-dimensional isosurface extraction algorithms. Authors of isosur-
facing papers usually compare their algorithm’s performance only with that of March-
ing Cubes. Analysis of theoretical average- and worst-case efficiency also plays a large

role in the literature. Unfortunately, different implementations and different platforms
make objective, empirical comparisons between algorithms difficult. Memory behavior
on modern computer architectures, for example, plays a crucial role in an application’s
performance, but an analysis of this important factor rarely appears.

This paper presents a comparative study of several representative isosurface extrac-
tion algorithms. It reports and analyzes empirical measurements of execution times and
memory behavior for each algorithm. Section 2 describes the algorithms tested, along
with implementation details of each. Section 3 describes the experiments and presents
the results. Section 4 summarizes the paper and draws conclusions.

2 Isosurface Extraction Techniques

Visualization applications in many fields [5,8, 10] use the Marching Cubes [11, 18]
algorithm to extract isosurfaces from volumetric data. Marching Cubes and other al-

gorithms use a voxel representation of the volume, considering each data point as the

vertex of some geometric primitive, such as a cube or tetrahedron. These primitives, or

cells, subdivide the volume and provide a useful abstraction for computing isosurfaces.

The Marching Cubes algorithm tests each cell in the volume for intersection with the
isosurface. By visiting cells in an order based on their position, this method can ex-
ploit the spatial coherence of the isosurface by reusing interpolation calculations along
edges sh~ed by two or more cells. However, the Marching Cubes method spends a high

percentage of time visiting cells that do not contain portions of the isosurface.
Researchers have introduced a number of techniques to increase the efficiency of

isosurface extraction over the linear search proposed in the Marching Cubes algorithm.
These methods fall into two general categories, characterized by the criteria used to par-
tition the cells. Geometric techniques retain the original representation of the volume
and partition along divisions in the geometric mesh. Span space decomposition tech-
niques create and manipulate abstract representations of the cells. Sections 2.1 and 2.2
describe representative methods from these two categories.

2.1 Geometric Decomposition Techniques

Wilhelms and van Gelder [17] describe the branch-on-need octree (BONO), a space-
efficient variation on the traditional octree. Their data structure partitions the cells in



the data based on their geometric positions. Extreme values (minimums and maxi-
mums) propagate up the tree during construction, enabling the extraction phase to prune
branches of the tree. The extraction algorithm traverses only those nodes whose values
span the isovalue, i.e. those with minvalue < isovalue < mazvalue. Figure 1 shows
how the branch-on-need strategy compares with an even-subdivision scheme in two di-
mensions. The even-subdivision strategy divides the volume evenly in each direction at

Even Subdivision Strategy Branch-on-Need Strategy
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Fig. 1. Two-dimensional example of the branch-on-need algorithm (from Wilhelms and van
Gelder [17]). The branch-on-need strategy produces fewer nodes when the dimensions of the
data do not equal powers of two.

each level of the tree, while the branch-on-need strategy partitions the volume such that
the “lower” subdivision in each direction covers the largest possible power of two cells.
This results in fewer nodes when the dimensions of the volume do not equal powers of
two, making the tree traversal more efficient. Leaf nodes in the branch-on-need octree
generally reference eight cells (nodes may reference fewer cells along the edges of the
volume). Figure 1 shows this in 2D, where leaf nodes usually represent four cells. This
greatly reduces the memory required, as one pair of extreme values covers eight cells.
In the original paper, a hash table of edges was used to exploit spatial coherence. After
the initial interpolation of a point along an edge, cells that share that edge access its
hash entry to avoid recomputing the interpolation.

Another technique involves propagating the isosurface from a set of seed cells. This

method combines aspects of both geometric decomposition techniques and span space
algorithms. A seed set must contain at least one cell per connected component of each

isosurface. The algorithm groups seed cells into a hierarchical search structure, then

‘ Seed sets contain aspects of span space techniques, but surface propagation requires informat-
ion about the structure of the volume, establishing it as an inherently geometric technique.



traverses that structure to find all seeds that intersect the current isosurface. Construction
of theisosurface beginsat these seeds andpropagates through neighboring cells using
adjacency and intersection information. The difficult portion of the surface propagation
algorithm lies in locating and selecting the seed cells. Itoh et al. [6,7] find the local

extremum points in the data and connect them with a graph in the spatial domain. The
seed set consists of the cells containing extremum points, plus all cells intersected by
the arcs of the graph and some cells along the boundaries if the volume has “holes”. A
thinning algorithm, commonly used in image processing, can then generate a skeleton
of the seed set that connects all extremum points, yet contains fewer cells. van Kreveld
et al. [16] also use a graph of local extremum points, but add saddle points to create a
contour tree but implementation details were not given. Bajaj et al. [1] use set theory
to find seed cells and a segment tree to organize and traverse them. Both structured
and unstructured meshes can utilize these techniques, which theoretically provide near-
optimal worst-case time complexity. However, noisy data may disturb the complicated
seed set construction process. Measurement data such as MRI and CT scans can cause
these algorithms to produce large numbers of seed cells, causing slower preprocessing
time.

2.2 Span Space Decomposition Techniques

Span space techniques partition cells based on their extreme values. Livnat et al. [9]
introduce the span space, where each cell maps to a point in 2D space. The cell’s min-
imum value defines the z-coordinate of the point, and the maximum value determines
the y-coordinate. All points in span space lie above they = x line, as shown in Figure 2.
For a given isovalue v, the points representing cells which intersect the isosurface have
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Fig. 2. Span Space (from Livnat et al. [9]). Each point represents a cell in the volume. The points
in the shaded area represent the cells that intersect the isosurface with isovalue v.

y > v and x < u, as shown by the shaded region in Figure 2. The NOISE algorithm

described in [9] overlays a kd-tree on the points. This structure organizes the points
such that during traversal, the algorithm needs to test only one of the two extreme val-
ues at each node in the tree. The authors use a pointerless representation of the kd-tree



to avoid the additional overhead of pointer traversal. Constructing this array involves

sorting the cells based on their extreme values. Sorting in a preprocess minimizes the

effect on isosurface extraction performance.

Shen et al. [14] use a lattice subdivision of span space in their ISSUE algorithm. The

user defines a lattice resolution L and the algorithm divides the span space points into
one of the L x L lattice elements. Given an isovalue W,the ISSUE method assigns each
lattice element to a category, as shown in Figure 3. The algorithm trivially excludes
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Fig. 3.
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Lattice classification in the ISSUE algorithm (from Shen et al. [14]).

cells in region 1 and trivially includes those in region 2. Cells in region 3 require a test
against their maximum value, those in region 4 requirea testagainsttheir minimum.

Only region 5 requires a full min-max search of its cells. Shen proposed a modified

version of the ISSUE algorithm [13] which creates search structures only at the lattice

elements along the diagonal region 5 and coalesces lattice elements at other regions into

sorted linear arrays. These modifications are implemented by building a kd-tree for each

lattice element along the y = x line, since only these elements may fall into the region 5

classification. This method simplifies and accelerates the search phase of isosurface

extraction, but this acceleration comes at the cost of a higher memory requirement than

the NOISE algorithm. The lattice structure itself requires additional memory and by

creating a search structure in lattice elements that may require a full min-max search,
further memory overhead is introduced. However, simple division of lattice elements
among parallel processors makes this algorithm easily parallelizable. The authors report
near-linear speedups using this parallel algorithm [14].

The Interval Tree technique introduced by Cignoni et al. [2,3] guarantees that the
worst-case efficiency is asymptotically optimal. This algorithm groups cells, repre-

sented by the intervals defined by their extreme values, at the nodes of a balanced binary
tree. Each node contains two lists, one sorted in ascending order of cell minima, the

other sorted in descending order of cell maxima. For any isovalue query, the algorithm
traverses at most one branch from a node after scanning through one of the lists. The

number of nodes created depends on the number of distinct interval extremes, usually
much smaller than the number of cells in the volume. The memory requirements for
representing intervals and for the two lists at each node dominate. The authors propose



improvements specific to the underlying geometry (structured or unstructured mesh).
A hash table of edges exploits spatial coherence in unstructured meshes, while regular
grids can utilize a form of local surface propagation.

3 Experimental Results

Both geometric and span space techniques accelerate isosurface extraction by limit-
ing the number of cells examined. This acceleration is usually described in terms of

average- and worst-case algorithm complexity. The analysis of asymptotic complexity
given by various authors [1,2,9, 14] shows that in the limit, the Interval Tree [2, 3] and
seed set [1] algorithms guarantee worse-case optimal efficiency while the NOISE [9] al-
gorithm provides near-optimal complexity. However, no quantitative performance com-
parison between the different algorithms exists, since most authors compare their tech-
nique only with Marching Cubes. This section describes the comparative performance
of various three-dimensional isosurface extraction techniques, each implemented and
tested using the same hardware and software framework. Marching Cubes [11, 18],
the branch-on-need octree (BONO) [17], and a surface propagation algorithm using
seed sets [1] represent the geometric decomposition techniques, while NOISE [9], IS-
SUE [14], and the Interval Tree [2, 3] represent span space algorithms. The NOISE
implementation uses a pointerless representation of the kd-tree. A similar data struc-
ture could be used by the other span space algorithms, but since span space algorithms
must always index cells, a certain amount of memory overhead is unavoidable. Each
implementation includes the optimization given in the paper, with the exception of
techniques explicitly designed to exploit spatial coherence, such as those given in [17]
and [3]. Every algorithm would benefit from these improvements, so fairness dictates
their omission. Each algorithm performs both the isosurface query and triangle con-
struction and thus are representative of execution times for the isosurface generation
process.

The test data consists of both a noisy, measurement data set and a simulation data

set that contains a continuous scalar field. The Head128 data set contains results from a
CT scan of a human head and consists of 128 x 128 x 128 points. The Rage256 data set
represents a CFD simulation of the classic Rayleigh-Taylor hydrodynamic instability,
in which two fluids of differing densities mix. This data set contains 256 x 256 x 256
points. Figure 4 shows a sample isosurface from each data set. Experimental results

Table 1. Experimental results from the Headl 28 data set.

Type lAlgorithm ]Average execution time

Standard lMarchin.q Cubes\ 2.13

I Geometric IBONO - 0.58 1
Seed Set 0.66
IISSUE 0.57

I

Span Space Interval Tree 0.56

NOISE 0.51



Fig. 4. Isosurfaces from simulation and measurement sources. (a) depicts an isosurface from the
RAGE computational fluid dynamics simulation, showing the bubbles formed by Rayleigh-Taylor
instability. (b) shows the skin isosurface from the volumetric data set produced by a CT scan.

allow comparison of both execution time and memory system behavior from execution

on a single dedicated processor of an SGI Origin 2000 with 8GB of memory. Table 1
shows execution times for each algorithm using the Head 128 data set. Table 2 displays
results from the Rage256 data set. Results in Table 1 represent averages from ten re-

Table 2. Experimental results from the Rage256 data set.

ISSUE 5.60
Span Space Interval Tree 8.84

NOISE 5.04

peated executions of ten representative isovalue queries. Table 2 represents averages
from ten executions of five representative isovalue queries.

All algorithms exhibit significant speedup over Marching Cubes. Most algorithms
perform similarly for the Head128 data set, as shown in Table 1. However, for the
Rage256 data set, large disparities in performance exist. Table 2 shows that BONO, IS-
SUE, and NOISE present the largest speedups, with the Branch-on-Need Octree provid-

ing the best performance. The surface propagation code used for the seed set technique
contains a large number of branches. Since the processor cannot readily predict the out-
come of these branches, this algorithm performs poorly. The Interval Tree technique,
although provably optimal in the limit, actually executes slower than every algorithm

but Marching Cubes for the Rage256 data set. To discover the causes of this result,



each implementation used the performance counters on the RI 0000 to track the number

of clock cycles, TLB misses, and L1 and L2 cache misses during execution. Figure 5
shows the experimental results for the Head 128 data set. Figure 6 shows the results ob-
tained from the Rage256 data set. The clock cycles charted in Figures 5(a) and 6(a)

“BITMNS “BITMNS

‘:ti=”ia
BIT#NS~ Bl~d~NS

Fig. 5. Experimental results from the Head] 28 data set. B = BONO, I = ISSUE, T = Interval Tree,
M = Marching Cubes, N = NOISE, S = Seed Set/Surface Propagation.

correspond closely to the execution times given in Tables 1 and 2. Figure 5(b) shows

that the span space techniques have a high TLB miss rate for the Headl 28 data set, but

Figures 5(c) and 5(d) demonstrate no such distinctions in L1 and L2 cache behavior.
Figures 6(b), 6(c), and b(d) uncover the reason for the Interval Tree’s low performance

in the Rage256 data set — the algorithm’s poor memory behavior. The large number

of TLB and cache misses imply that this algorithm visits data in a different order than

that adhered to by the data in memory. The severity of this difference in marching or-

der requires processing to stall repeatedly as the operating system swaps information in

and out of these hardware structures. In contrast, the BONO and Marching Cubes al-

gorithms visit data in an order similar to that of the data in memory, since they traverse

the geometric volume. These two algorithms have low instances of TLB and L2 cache

misses, which incur high penalties.

To demonstrate the tradeoff between performance and storage space, Figure 7 shows

the amount of memory overhead required by each algorithm for both test data sets.

These figures do not include the memory required to store the data set, nor the mem-

ory consumed by storing the triangles that compose the isosurface, since all algorithms
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Fig. 6. Experimental results from the Rage256 data set. B = BONO, I = ISSUE, T = Interval Tree,
M = Marching Cubes, N = NOISE, S = Seed Set/Surface Propagation.
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Fig. 7. Memory overhead requirements for the Head128 and Rage256 data sets. B = BONO,
I = ISSUE, T = Interval Tree, M = Marching Cubes, N = NOISE, S = Seed Set/Surface Propaga-

tion.



require this memory. BONO uses the least amount of additional memory, which is to

be expected since it retains the original representation of the data volume. The seed

set method has nearly as much memory overhead as the NOISE algorithm because a

extrema data structure is used. In these implementations, the ISSUE and Interval Tree
algorithms consume large amounts of memory, approximately five times the amount re-

quired to store the original data. In fairness, this is due to implementation details. Both
ISSUE and the Interval tree could use a pointerless data structure which would reduce
the amount of memory overhead. Also, the span space methods as implemented use in-
dices to individual cells while BONO indexes eight cell simultaneously. An interesting
comparison would be to raise the index to groups of cells rather than individual cells.

These experiments show that data structures increase the memory required to ex-

tract isosurfaces, but allow the computation to execute more quickly than in a simple
marching method. However, algorithms that consume larger amounts of memory do not
necessarily yield better performance.

4 Conclusion

The comparison of multiple isosurface extraction algorithms has not been previously

available. This case study performs such a comparison with several data sets and at-

tempts to show the empirical performance differences on both measurement data and

simulation data. Based on the data structures required, the large constant for prov-

ably optimal algorithms is amplified by modern computer architectures where cache

and page misses induce large performance penalties. With such architectures being the
prevalent compute platform, the theoretical gains do not appear in practice.

While this case study relates a fair comparison of different isosurface techniques
several enhancements can be made. The span space methods could benefit from index-
ing to groups of cells, as the BONO algorithm does, rather than to single voxels. The

implementation of the NOISE algorithm uses a pointerless data structure while the IS-
SUE and Interface Tree implementations do not. Both of these algorithms could use
pointerless data structures which would improve their memory overhead and perfor-
mance. The memory overhead for each would still be higher than NOISE due to the
required data structures.

This case study points out the value of performing empirical comparisons of pub-
lished algorithms. Such comparisons should not be limited to isosurface techniques but
should also be performed for other visualization algorithms to examine the practicality
of such techniques.
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